Publications

Export 46 results:
Author Title [ Type(Desc)] Year
Journal Article
Boldog I, Bereciartua PJ, Bulanek R, et al. 10-vertex closo-carborane: a unique ligand platform for porous coordination polymers. CrystEngComm. 2016;18(12):2036-2040. Available at: http://pubs.rsc.org/en/content/articlelanding/2016/ce/c5ce02501j#!divAbstract.
Thomas JC, Goronzy DP, Serino AC, et al. Acid-Base Control of Valency within Carboranedithiol Self-Assembled Monolayers: Molecules Do the Can-Can. ACS Nano. 2018;12(3):2211–2221. Available at: https://pubs.acs.org/doi/10.1021/acsnano.7b09011.
Base T, Cisarova I, Stepnicka P. Acid-catalyzed self-alkylation of FcCH(2)NHPh. Solid-state structures of FcCH(2)NHPh and (FcCH(2))2NPh. Inorganic Chemistry Communications. 2002;5(1). Available at: http://www.sciencedirect.com/science/article/pii/S138770030100346X.
Parize M, Base T, Londesborough MGS, Lisa V, Bacakova L. The adhesion and growth of vascular smooth muscle cells in cultures on carboranethiol-modified gold films. Engineering of Biomaterials. 2008;11. Available at: http://neutron.ujf.cas.cz/vdg/LC06041/2008_W_Parizek_1.pdf.
Vetushka A, Bernard L, Guseva O, et al. Adsorption of oriented carborane dipoles on a silver surface. Physica Status Solidi B. 2016;253(3):591-600.
Valusova E, Kanuchova M, Base T, Viglasky V, Antalik M. The Au25(SR)18 cluster carrying icosahedral dodecaborate and glutathione ligands: A spectroscopic view. Journal of Physics and Chemistry of Solids. 2020. Available at: https://www.sciencedirect.com/science/article/pii/S0022369720307411?via%3Dihub.
Langecker J, Fejfarova K, Dusek M, Rentsch D, Base T. Carbon-substituted 9,12-dimercapto-1,2-dicarba-closo-dodecaboranes via a 9,12-bis(methoxy-methylthio)-1,2-dicarba-closo-dodecaborane precursor. Polyhedron. 2012;45. Available at: http://www.sciencedirect.com/science/article/pii/S0277538712005207.
Base T, Bastl Z, Havranek V, et al. Carboranedithiols: Building Blocks for Self-Assembled Monolayers on Copper Surfaces. Langmuir. 2012;28. Available at: http://pubs.acs.org/doi/abs/10.1021%2Fla302334x.
Jana A, Jash M, Dar WAhmed, et al. Carborane-thiol protected copper nanoclusters: Stimuli-responsive materials with tunable phosphorescence. Chemical Science. 2023;14:1613-1626. Available at: https://pubs.rsc.org/en/content/articlelanding/2023/sc/d2sc06578a.
Jana A, Jash M, Dar WA, et al. Carborane-thiol protected copper nanoclusters: Stimuli-responsive materials with tunable phosphorescence . Chemical Science. Available at: https://pubs.rsc.org/en/content/articlelanding/2023/sc/d2sc06578a.
Base T, Bastl Z, Plzak Z, et al. Carboranethiol-Modified Gold Surfaces. A Study and Comparison of Modified Cluster and Flat Surfaces. Langmuir. 2005;21(17). Available at: http://pubs.acs.org/doi/abs/10.1021/la051122d.
Jana A, Unnikrishnan PM, Poonia AK, et al. Carboranethiol-Protected Propeller-Shaped Photoresponsive Silver Nanomolecule. Inorganic Chemistry. 2022;61:8593−8603. Available at: https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c00186.
Base T, Bastl Z, Havranek V, et al. Carborane-thiol-silver interactions. A comparative study of the molecular protection of silver surfaces. Surface and Coatings Technology. 2010;204. Available at: http://www.sciencedirect.com/science/article/pii/S0257897210001106.
White KE, Avery EM, Cummings E, et al. Competing Intermolecular and Molecule–Surface Interactions: Dipole–Dipole-Driven Patterns in Mixed Carborane Self-Assembled Monolayers. Chemistry of Materials. 2024;36:2085-2095. Available at: https://pubs.acs.org/doi/10.1021/acs.chemmater.3c03210.
Bould J, Machacek J, Londesborough MGS, et al. Decaborane Thiols as Building Blocks for Self-Assembled Monolayers on Metal Surfaces. Inorganic Chemistry. 2012;51.
Londesborough MGS, Bould J, Base T, et al. An Experimental Solution to the "Missing Hydrogens" Question Surrounding the Macropolyhedral 19-Vertex Boron Hydride Monoanion [B19H22](-), a Simplification of Its Synthesis, and Its Use As an Intermediate in the First Example of syn-B18H22 to anti-B18H22. Inorganic Chemistry. 2010;49(9):4092–4098. Available at: http://pubs.acs.org/doi/abs/10.1021/ic901976y.
Wang S, Goronzy DP, Young TD, et al. Formation of Highly Ordered Terminal Alkyne Self-Assembled Monolayers on the Au{111} Surface through Substitution of 1-Decaboranethiolate. J. Phys. Chem. C. 2019;123(2):1348–1353. Available at: https://pubs.acs.org/doi/10.1021/acs.jpcc.8b11033.
Wann DA, Lane PD, Robertson HE, Base T, Hnyk D. The gaseous structure of closo-9,12-(SH)2-1,2-C2B10H10, a modifier of gold surfaces, as determined using electron diffraction and computational methods. Dalton Transactions. 2013;42. Available at: http://pubs.rsc.org/en/results?artrefjournalname=dalton%20trans.&artrefstartpage=12015&artrefvolumeyear=2013&fcategory=journal.
Base T, Bastl Z, Slouf M, et al. Gold Micrometer Crystals Modified with Carboranethiol Derivatives. J. Phys. Chem. C. 2008;112(37). Available at: http://pubs.acs.org/doi/abs/10.1021/jp802281s.
Base T, Holub J, Fanfrlik J, et al. Icosahedral Carbaboranes with Peripheral Hydrogen– Chalcogenide Groups: Structures from Gas Electron Diffraction and Chemical Shielding in Solution. Chemistry A European Journal. 2019;25(9):2313-2321. Available at: https://onlinelibrary.wiley.com/doi/10.1002/chem.201805145.
Goronzy DP, Stanek J, Avery E, et al. Influence of Terminal Carboxyl Group on Structure and Reactivity of Functionalized m-Carboranethiolate Self-Assembled Monolayers. Chemistry of Materials. 2020;32:6800−6809. Available at: https://pubs.acs.org/doi/10.1021/acs.chemmater.0c02722.

Pages