Publications

Export 27 results:
Author Title [ Type(Desc)] Year
Filters: First Letter Of Last Name is K  [Clear All Filters]
Journal Article
Boldog I, Bereciartua PJ, Bulanek R, et al. 10-vertex closo-carborane: a unique ligand platform for porous coordination polymers. CrystEngComm. 2016;18(12):2036-2040. Available at: http://pubs.rsc.org/en/content/articlelanding/2016/ce/c5ce02501j#!divAbstract.
Valusova E, Kanuchova M, Base T, Viglasky V, Antalik M. The Au25(SR)18 cluster carrying icosahedral dodecaborate and glutathione ligands: A spectroscopic view. Journal of Physics and Chemistry of Solids. 2020. Available at: https://www.sciencedirect.com/science/article/pii/S0022369720307411?via%3Dihub.
Jana A, Jash M, Dar WA, et al. Carborane-thiol protected copper nanoclusters: Stimuli-responsive materials with tunable phosphorescence . Chemical Science. Available at: https://pubs.rsc.org/en/content/articlelanding/2023/sc/d2sc06578a.
Jana A, Jash M, Dar WAhmed, et al. Carborane-thiol protected copper nanoclusters: Stimuli-responsive materials with tunable phosphorescence. Chemical Science. 2023;14:1613-1626. Available at: https://pubs.rsc.org/en/content/articlelanding/2023/sc/d2sc06578a.
Jana A, Jash M, Dar WAhmed, et al. Carborane-thiol protected copper nanoclusters: Stimuli-responsive materials with tunable phosphorescence. Chemical Science. 2023;14:1613-1626. Available at: https://pubs.rsc.org/en/content/articlelanding/2023/sc/d2sc06578a.
Jana A, Jash M, Dar WA, et al. Carborane-thiol protected copper nanoclusters: Stimuli-responsive materials with tunable phosphorescence . Chemical Science. Available at: https://pubs.rsc.org/en/content/articlelanding/2023/sc/d2sc06578a.
Jana A, Jash M, Dar WA, et al. Carborane-thiol protected copper nanoclusters: Stimuli-responsive materials with tunable phosphorescence . Chemical Science. Available at: https://pubs.rsc.org/en/content/articlelanding/2023/sc/d2sc06578a.
Jana A, Jash M, Dar WAhmed, et al. Carborane-thiol protected copper nanoclusters: Stimuli-responsive materials with tunable phosphorescence. Chemical Science. 2023;14:1613-1626. Available at: https://pubs.rsc.org/en/content/articlelanding/2023/sc/d2sc06578a.
Base T, Bastl Z, Plzak Z, et al. Carboranethiol-Modified Gold Surfaces. A Study and Comparison of Modified Cluster and Flat Surfaces. Langmuir. 2005;21(17). Available at: http://pubs.acs.org/doi/abs/10.1021/la051122d.
Bairagi S, Patel DKumar, Chatterjee D, et al. Cluster versus coordination: the chemistry of cyclopentadienyl titanium and vanadium complexes with B- and C-functionalized carborane-thiols, [C2B10H12−n(SH)n] (n = 2 or 3). Chemical Science. 2025. Available at: https://pubs.rsc.org/en/content/articlelanding/2025/sc/d5sc03562g.
Bould J, Machacek J, Londesborough MGS, et al. Decaborane Thiols as Building Blocks for Self-Assembled Monolayers on Metal Surfaces. Inorganic Chemistry. 2012;51.
Londesborough MGS, Bould J, Base T, et al. An Experimental Solution to the "Missing Hydrogens" Question Surrounding the Macropolyhedral 19-Vertex Boron Hydride Monoanion [B19H22](-), a Simplification of Its Synthesis, and Its Use As an Intermediate in the First Example of syn-B18H22 to anti-B18H22. Inorganic Chemistry. 2010;49(9):4092–4098. Available at: http://pubs.acs.org/doi/abs/10.1021/ic901976y.
Base T, Bastl Z, Slouf M, et al. Gold Micrometer Crystals Modified with Carboranethiol Derivatives. J. Phys. Chem. C. 2008;112(37). Available at: http://pubs.acs.org/doi/abs/10.1021/jp802281s.
Goronzy DP, Stanek J, Avery E, et al. Influence of Terminal Carboxyl Group on Structure and Reactivity of Functionalized m-Carboranethiolate Self-Assembled Monolayers. Chemistry of Materials. 2020;32:6800−6809. Available at: https://pubs.acs.org/doi/10.1021/acs.chemmater.0c02722.
Patel DKumar, Sooraj BS, Kirakci K, et al. Macropolyhedral syn-B18H22, the “Forgotten” Isomer. Journal of the American Chemical Society. 2023;145:17975−17986. Available at: https://pubs.acs.org/doi/10.1021/jacs.3c05530.
Patel DKumar, Sooraj BS, Kirakci K, et al. Macropolyhedral syn-B18H22, the “Forgotten” Isomer. Journal of the American Chemical Society. 2023;145:17975−17986. Available at: https://pubs.acs.org/doi/10.1021/jacs.3c05530.
Nagar H, Duary S, Yadav V, et al. Mechanochromic luminescence in copper nanoclusters: resolving structural transitions through microcrystal electron diffraction. Chemical Communications. 2025. Available at: https://pubs.rsc.org/en/content/articlelanding/2025/cc/d5cc02594j.
Jana A, Duary S, Das A, et al. Multicolor photoluminescence of Cu14 clusters modulated using surface ligands. Chemical Science. 2024. Available at: https://pubs.rsc.org/en/content/articlelanding/2024/sc/d4sc01566e?fbclid=IwY2xjawEbPEpleHRuA2FlbQIxMAABHSdHrudEy8SHjsokfQULtsUmfvHic2gEFr4U065NwJ6qN1LFmIkYwaAntQ_aem_eQUA0V-1Rl2jNgjrSiijPw.
Kini AR, Debta S, Jana A, et al. Nanomechanical Investigations of Crystals of Copper Nanocluster Isomorphs: Enhanced Hardness of the Low-Density Analogue. Chemistry of Materials. 2025. Available at: https://pubs.acs.org/doi/10.1021/acs.chemmater.4c03265.
Kini AR, Debta S, Jana A, et al. Nanomechanical Investigations of Crystals of Copper Nanocluster Isomorphs: Enhanced Hardness of the Low-Density Analogue. Chemistry of Materials. 2025. Available at: https://pubs.acs.org/doi/10.1021/acs.chemmater.4c03265.
Bould J, Base T, Londesborough MGS, et al. Reversible Capture of Small Molecules On Bimetallaborane Clusters: Synthesis, Structural Characterization, and Photophysical Aspects. Inorganic Chemistry. 2011;50. Available at: http://pubs.acs.org/doi/abs/10.1021%2Fic200374k.
Bould J, Base T, Londesborough MGS, et al. Reversible Capture of Small Molecules On Bimetallaborane Clusters: Synthesis, Structural Characterization, and Photophysical Aspects. Inorganic Chemistry. 2011;50. Available at: http://pubs.acs.org/doi/abs/10.1021%2Fic200374k.
Jana A, Li Z, Kini ARamachandr, et al. A Silver-Chalcogenide Nanomaterial Enveloped with a Carborane-Thiolate Shell for the Electroreduction of CO2 to CO. ACS Applied Nano Materials. 2025. Available at: https://pubs.acs.org/doi/10.1021/acsanm.5c01918.
Yadav V, Jana A, Acharya S, et al. Site-specific substitution in atomically precise carboranethiol-protected nanoclusters and concomitant changes in electronic properties. Nature Communications. 2025;16. Available at: https://www.nature.com/articles/s41467-025-56385-w.
Stepnicka P, Base T, Cisarova I, et al. Synthesis and catalytic activity of spaced ferrocene oxazolines. Collection of Czechoslovak Chemical Communications. 2003;68(7). Available at: http://cccc.uochb.cas.cz/68/7/1206/.

Pages